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1. Introduction

Robots operating in the real world must efficiently inter-

act with their surroundings. Similarly to biological agents,

robots can make use of an array of sensors for process-

ing multiple modalities such as vision and audio with the

goal of promptly undertaking behaviourally relevant deci-

sions through the combination of sensory observations with

prior knowledge and expectations (e.g. internally generated

models of the world) [6]. The integration of multisensory

information has been widely studied in the literature, e.g.,

for the learning of multisensory representations from het-

erogeneous sensor data [12]. However, it is typically as-

sumed that the multisensory measurements provide a com-

plete and coherent data stream that can be integrated on the

basis of spatial and/or temporal coincidence. Nevertheless,

behaviour should be swift and singular also in situations of

sensory uncertainty and multisensory conflict [11].

A vast number of behavioural studies have provided

valuable insights into how spatially congruent and incon-

gruent multisensory stimuli can be modelled in artificial

systems (e.g., [2]). However, the stimuli used for triggering

responses do not reflect the complexity of the environment

that artificial agents are expected to interact with. Critically,

audio-visual spatial tasks typically use (over)simplified

stimuli such as light blobs and sound clicks, and show only

one stimulus per modality. Under these conditions, sub-

jects produce responses based on the spatiotemporal con-

gruency of the audio-visual cues but neglect likewise impor-

tant factors such as semantic congruency and expectations.

Such top-down factors significantly contribute to the devel-

opment of a robust percept [14] and are crucial for mod-

elling multisensory integration in robots.

In this extended abstract, we present a recently published

study of crossmodal conflict resolution in a complex en-

vironment [9]. To better understand how humans solve

crossmodal conflicts, we extended a previously proposed

behavioural study with an audio-visual spatial localization

task [10]. Our novel study was conducted in an immersive

projection environment and comprises a scene with four

animated avatars sitting around a table which can produce

congruent and incongruent audio-visual stimuli. We trained

a deep learning model to trigger human-like responses and

evaluated this approach with an iCub robot exposed to the

same experimental conditions as human subjects.

Our neurorobotic study contributes to the leverage of

current models of robot perception and behaviour taking

into account the complex nature of crossmodal environ-

ments and the way humans perceive, learn, and act on the

basis of rich (and often uncertain) streams of multisen-

sory input. The main contribution of this work is twofold.

First, we provide a quantitative analysis of visually-induced

bias on the estimation of sound source localization for dif-

ferent types of audio-visual conflicts. Our findings sug-

gest that i) semantics embedded in the scene modulate the

magnitude and extension of the visually-induced bias and

ii) expectation-driven perceptual mechanisms introduced by

the exposure to animated avatars induces a systematic er-

ror in the responses comprising static avatars. Second, we

implement a deep neural network architecture that models

human-like behaviour and triggers similar responses with

an iCub robot in real time. The model is motivated by neu-

roscientific findings suggesting i) the processing of auditory

cues (sound source localization) and visual cues (face and

body motion) in distinct brain areas and ii) their combina-

tion, in terms of neurons responding to (in)congruent mul-

tisensory representations, in higher-level areas [1].

2. Behavioural Study

In a previous study [10], we proposed an audio-visual

(AV) spatial localization task that comprised a set of 4 ani-

mated avatars. The AV stimuli consisted of one avatar with

moving lips along with a synchronous, spatially congruent

or incongruent auditory cue. Our findings suggest that hu-

man subjects were more inaccurate to spatially localize the
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Figure 1: Behavioural study on audio-visual localization: (a) Immersive experimental setup with acoustically transparent

concave projection screen (b) Subject selecting a position via a keyboard (c) Schematic illustration of one trial of the AV

localization task.

sound when exposed to incongruent AV stimuli. However,

the study was subject to a number of limitations. First, we

tested subjects on AV stimuli comprising one visual and one

auditory cue. Crucially, natural scenes may include multiple

visual cues influencing multisensory integration to different

extents. Therefore, it is important to assess the interplay of

multiple visual cues conveying different semantic meaning,

e.g., lip and body movement. Second, the visual stimuli

were displayed on a 17-inch monitor and the auditory ones

were presented via a headphone set, thus significantly dif-

fering from natural crossmodal environments and the way

humans (and robots) interact with their surroundings. In

this novel study, we extend our experimental design to test

new hypotheses and propose a new immersive experimental

setup so that human subjects and an iCub humanoid robot

can be exposed to the same experimental conditions.

For a schematic illustration of our behavioural study, see

Fig. 1. A total of 33 subjects (7 female, aged 21–32, right-

handed) participated in our experiment. All participants re-

ported that they did not have a history of any neurological

conditions (seizures, epilepsy, stroke), and had normal or

corrected-to-normal vision and hearing. The AV localiza-

tion task consisted of the subjects having to select which

avatar (out of the 4 avatars in the scene) they believe the au-

ditory cue is coming from. The 4 avatars may move their

lips and/or arm in temporal correspondence with an audi-

tory cue. The latter consists of a vocalized combination of

3 syllables (all permutations without repetition composed

of ”ha”, ”wa”, ”ba”). The duration of both visual and au-

ditory stimuli is 1000 ms. The experiment comprised 5 AV

conditions:

1. Baseline: Auditory cue and static avatars.

2. Moving Lips: Auditory cue and one avatar with mov-

ing lips.

3. Moving Arm: Auditory cue and one avatar with a

moving arm.

4. Moving Lips+Arm: Auditory cue and one avatar with

moving lips and arm.

5. Moving Lips–Arm: Auditory cue and one avatar with

moving lips and another avatar with a moving arm.

For all the conditions except for Condition 1, the AV pair

may be spatially congruent or incongruent. In Condition 5,

spatial congruency comprises lips-audio or arm-audio pairs.

If we consider all the AV-pair combinations derived from

the 5 conditions, it results in 200 trials.

We analyzed our behavioural data in terms of the error

rate (ER) with respect to the ground-truth position of the au-

ditory cue. The amount of visually-induced bias on auditory

cues depends on the proximity of the cues and their position

with respect to the field of view. In the spatial ventriloquism

effect, the perception of the auditory stimulus is shifted to-

wards the direction of the visual cue in relation to their spa-

tial proximity. This integration window, however, breaks

down when the distance between the two stimuli is greater

than 20-25 degrees and the magnitude of the visual bias be-

comes negligible [4]. Furthermore, visual spatial resolution

is higher in the center of the field of view (FOV), thus the

magnitude of the visual bias is expected to be higher to-

wards the center rather than towards the periphery [7].

Our findings suggest that the embedded semantics sig-

nificantly modulate the magnitude and extension (in terms

of integration windows) of the visually-induced bias. Mov-

ing lips cause higher error rates in the final estimate of the

location of the sound with respect to a moving arm (which is

visually more salient). This is in line with fMRI studies sug-

gesting the highest multisensory integration in terms of neu-

ral activation for congruent mouth-voice stimuli (e.g.,[14]).

In contrast to previous studies showing that the integra-

tion window breaks down for distances greater than 20-25

degrees [4], in our case the magnitude of the visual bias is

significant also when the incongruent AV stimuli are com-

ing from the two avatars at the extremes of the screen. This

can be interpreted in terms of synchronized AV pairs being
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merged as a single event irrespective of their spatial dis-

parity due to their temporal correlation perceived as a form

of causation [8]. We can argue that embedded semantics

in the scene contribute to a wider integration window with

respect to the boundaries empirically found for simplified

stimuli [1]. To further verify this hypothesis, we examined

whether the induced bias during incongruent AV stimuli

was in the direction of the visual cue, i.e., we tested the ven-

triloquist effect. The results for the different conditions are

shown in Fig. 3.d, which are consistent with the hypothesis

that visual cues encoding environmental statistics induce a

stronger bias and that the magnitude of the bias is related to

the embedded semantics, e.g., moving lips+arm induces a

slightly stronger bias than moving lips. Furthermore, while

an incongruent arm movement in moving lips–arm acts as

distractor decreasing the magnitude of the visual bias to-

wards the lips, this magnitude is still significant.

Finally, when the auditory cue is played along with static

avatars, subjects were not as accurate as expected in the ab-

sence of a visual bias. One hypothesis for this effect is that

the extended exposure to animated avatars may create the

expectation of seeing similar animated patterns in the next

trials, thus perceiving a static avatar as incongruent with re-

spect to an expected dynamic visual cue.

3. Neurorobotic Experiment

The goal of the neurorobotic experiment was to trigger

human-like responses with an iCub [5] exposed to the same

conditions as the human subjects. We used the collected

behavioural data to train a deep learning model and com-

pared the results with human responses. We propose a deep

learning model processing both spatial and feature-based

information in which low-level areas (such as the visual and

auditory cortices) are predominantly unisensory, while neu-

rons in higher-order areas encode multisensory representa-

tions. The proposed architecture comprises 3 input chan-

nels (audio, face, and body motion) and a hidden layer that

computes a discrete behavioural response on the basis of the

output of these unisensory channels (see Fig. 2).

To train our model on crossmodal conflict resolution, we

first train the individual channels using modality-specific

spatial information (Fig. 2; gray bounding box). The au-

ditory channel is trained to locate a sound source, the face

channel to locate moving lips, and the body motion channel

to locate arm movement. This procedure ensures that each

channel is able to describe modality-specific stimuli. After

the individual training of these 3 channels, a fully connected

hidden layer receives modality-specific representations as

input and is trained using the human responses as teaching

signals. The output softmax layer represents a probability

distribution over the 4 possible responses.

Audio (Left & Right) Face Body Motion

D F J K

Robot 
behavioural 
response

4 conv-layers 2 conv-layers 2 conv-layers

Fully connected layer

Figure 2: Multichannel deep learning model for multisen-

sory integration and conflict resolution. The model com-

bines sound localization, facial features, and body motion to

produce a discrete behavioural response in real time. Each

channel is first trained with modality-specific spatial infor-

mation (gray bounding box) and used as input for a hid-

den layer trained with multisensory representations using

human behavioural responses as the teaching signals.

3.1. Robot Behaviour

For a direct human-robot comparison, we placed the

iCub in front of the projection screen (Fig. 3.a; see Fig. 1.a

for setup with humans). In order to prevent biasing the robot

behaviour towards a specific subject, we evaluate the model

using leave-one-out cross-validation with the responses of

32 subjects for training and of 1 subject for testing. Since

each participant produced 600 responses, we had 32×600

training data points for each training fold, for which a new

network was initialized. This training procedure resulted

in 33 network instances from which we generated 33×600

responses used to compare robot-vs-human behaviour.

The error rates of the robot averaged across all conditions

are shown in Fig. 3.b, where it can be seen that the human-

vs-robot ER difference is not significant. Interestingly, there

is an inverse trend with respect to humans in which the ER

is higher for the avatars in the center and decreases for the

ones at the sides. This difference can be explained due to

the different ways in which humans and the robot process

incoming visual input. Human vision has higher spatial res-

olution towards the center of the FOV (referred to as foveal

vision), which leads to a stronger visual bias over the es-

timate of the sound source’s location when the visual cue

occurs towards the center [7]. On the other hand, the vi-

sual input processed by the robot does not comprise such

foveal property, and consequently, the visual bias has the

same magnitude irrespective of its position within the FOV

of the camera. However, since the model is trained with data

collected from robot sensors but using human responses as a
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Figure 3: Neurorobotic experiment: (a) iCub exposed to

the immersive experimental setup (b) Error rate after ex-

posure to congruent and incongruent AV stimuli (c) Robot

vs Human comparison in terms of the ventriloquism effect

(response biased towards the visual cue) showing similar

trends for all the conditions with incongruent AV stimuli.

teaching signal, there is a compensation artefact introduced

by the hidden layer which results in such an inverse trend of

the magnitude of the visual bias in relation to its position.

In order to address this artefact, it would be necessary to

model properties of foveal vision embbeded in the convolu-

tional channels processing the visual input (e.g., [3]).

In terms of the magnitude of the bias reflecting environ-

mental statistics, we analyzed the proportion of ER due to

shifting the estimate towards the visual cue (ventriloquism

effect). It can be seen from Fig. 3.c-d that the behaviour of

the robot resembles human responses for all the conditions.

4. Future Work

The obtained results motivate further research in three

main directions. First, the experimental scenario can be ex-

tended to more natural scenes, e.g., by displaying real-world

videos with human characters. Second, the deep learning

model was trained in a supervised fashion, i.e., by provid-

ing the expected responses as a target. Instead, it may be

of interest to study whether and how such behaviour can

emerge from the unsupervised exposure to congruent AV

stimuli, e.g., by learning environmental statistics. Third, we

observed that subjects adopting a strategy that relied mostly

on auditory cues exhibited smaller error rates. Studies sug-

gest that the brain changes its strategy according to the re-

liability of sensory drive and mechanisms of cognitive con-

trol [13]. Consequently, it would be of interest to model

the dynamic selection of perceptual strategies on the basis

of modality-specific reliability, conflict adaptation effects,

top-down attention, and prior knowledge.
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